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Indenter penetration into viscoelastic materials depends on the load magnitude and history of loading. Hardness is not a 
constant, but decreases with the time under load. Corrections must be made in the unloading curve used for the determination 
of contact area and „instantaneous“ elastic modulus. The viscoelastic properties are best characterised by means of rheologic 
models consisting of springs and dashpots. The constants in these models can be obtained easily from the time course of 
indenter displacement under constant load, but one must respect also the deformations occuring during the load increase 
from zero to the nominal load. The paper explains the principle of instrumented indentation, gives the theory and formulae for 
elastic-plastic and viscoelastic materials, and describes the practical procedure for testing and data evaluation.  
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1. Introduction  
 
Nanoindentation, called also depth-sensing or 

instrumented indentation, provides information about 
mechanical properties from indenter load and depth 
measured continuously during loading and unloading (Fig. 
1). Today, these methods are well established for elastic- 
plastic materials like metals or ceramics. They can also be 
used for the characterisation of polymeric and other 
materials whose response to load depends also on time, but 
specific features of their behaviour must be taken into 
account in the preparation of tests and data evaluation. The 
pertinent methods are still under development. This paper, 
after a brief review of basic formulae for nano- indentation 
into elastic-plastic materials, explains the load response of 
viscoelastic materials and presents the general formulae, 
with emphasis on indentation testing. Also, a practical 
testing procedure is described.  

 

 
 

Fig. 1.   Load-depth curves of an indentation test – a schematic. 
 

2. Principal formulae for depth-sensing testing  
     of elastic-plastic materials 
 
In depth-sensing tests, hardness H is defined as the 

mean contact pressure, and calculated by dividing the 
indenter load P by the projected contact area A:  

 
H  = P / A    .           (1) 

 
The contact area is calculated from contact depth hc, 

obtained from the total penetration h, indenter load and 
contact stiffness S = dP/dh at the beginning of unloading 
(Fig. 1): 
 

hc  =  h  –  ε P/S   ,        (2) 
 

where ε is a constant (ε  ≈ 0.75). The stiffness S is 
determined from the regression function fitted to the 
unloading curve, usually by the procedure proposed by 
Oliver and Pharr [1]. Then, the reduced modulus E* is 
calculated from the contact stiffness and contact area: 
 

E* =  π1/2S / (2β A1/2)        (3) 
 
β is the correction factor for the indenter shape (β ≈ 1.05). 
E* is related to the elastic modulus E and Poisson ratio ν of 
the specimen (no subscript) and indenter (subscr. i) as 
 

1/E*  =  (1 – ν2)/E  + (1 – νi
2)/Ei  .       (4) 

 
 

3. Theoretical background for testing of  
     viscoelastic materials                              
 
The response of some materials, such as polymers, is 
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more complex, as it depends not only on the load magnitude, 
but also on its duration and time course. 

 The indenter continues penetrating into the specimen 
even under constant load (Fig. 2). Such materials are called 
viscoelastic or viscoelastic-plastic. In this case, hardness (1) 
is no more a constant, but decreases with the time under 
load, H = H(t).  

 

 
 

Fig. 2. Time course of a nanoindentation test into PMMA 
[2].  L – loading, D – dwell under constant load, U –  
                                      unloading. 

 
 

Moreover, due to delayed deforming also the 
unloading part of the P – h curve is sometimes distorted 
(Fig. 3); it is much more convex than in elastic matrials, 
with a bulge or even a “nose”. This can lead to an error in 
the determination of contact stiffness S, and thus to an error 
in the contact depth and area, as well as in the elastic 
modulus and hardness. If the time-dependent effects are not 
negligible, a special approach is needed. This paper will 
deal with procedures for viscoelastic materials and 
monotonic loading and unloading. The determination of 
viscoelastic properties under harmonic loading can be 
found in Menčík et al. [2]. The characterisation of 
viscoelastic-plastic properties, typical by the occurrence of 
time-independent permanent deformations, will be the 
topic of another paper.  

The delayed deforming can be accounted for in various 
ways. In order to avoid the distorsion of unloading curve 
(Fig. 3), it is recommended to insert a dwell (with constant 
load) between the loading and unloading period. According 
to Chudoba and Richter [3], the influence of delayed 
deforming on the unloading curve may be neglected if the 
creep velocity has decreased so that the penetration depth at 
the end of dwell grows not faster than 1% per minute. Some  
disadvantage of this approach is that the indenter depth at 
the beginning of unloading (after the dwell) is larger than at 
the end of loading, and this results in larger contact area and 
lower apparent hardness. 

Therefore, some authors recommend to use relatively 
fast loading followed immediately by fast unloading, and to 
calculate the contact depth and elastic modulus using the 
effective contact stiffness S, defined by the following 
expression proposed by Ngan et al. [4] 

 

udapp PhSS += −− 11      ;        (5) 

 
Sapp is the apparent stiffness, obtained by the common 
Oliver & Pharr [1] procedure from the unloading curve, dh  

is the indenter velocity at the end of dwell, and uP  is the 
load decrease rate at the beginning of unloading (Figure 3); 
the units are N/m, m/s and N/s, respectively. 

However, the results can also be influenced by 
viscoelastic deforming during the loading phase.  What is 
considered as fast loading with respect to the possibilities of 
the indentation device, it is sometimes not sufficiently fast 
regarding the material ability of quick viscoelastic response. 
Moreover, it is generally insufficient to characterise 
materials that flow permanently under load, only by means 
of a single value of hardness or elastic modulus. Preferrably, 
the time-dependent properties should be described in a 
more appropriate way. Usually, rheological models 
consisting of springs and dashpots are used, such as the 
Kelvin or Maxwell model and their combinations (Fig. 4). 
The parameters in these models, suitable as material 
characteristics, can be obtained by fitting the time course of 
penetration depth by a suitable creep function, depending 
on the material, indenter shape and loading history. The 
commonly used formulae are based on the approach 
proposed by Lee and Radok [5], which uses the elastic 
solution, but replaces the elastic constants by a viscoelastic 
hereditary integral operator; cf. Johnson [6] or Oyen [7].  
 

 
Fig. 3:  Load-depth diagram for elastic and viscoelastic (v.- el.) 

material; note the differences between unloading curves. 
 
 

The relationship between indenter load and depth of 
penetration into an elastic or viscoelastic material under 
monotonic loading can be expressed generally as 

 
f [h(t)]  =  K ψ (P, J, t)    ,         (6) 

 
where f is some function of the indenter shape and 
penetration, K is a constant characterising the indenter 
geometry, and ψ(P, J, t) is a function depending on the load 
magnitude and history, on material parameters, and on time. 
For spherical indenter (subscript s), 
 

fS  =  h 3/2  ;   KS  =  3 / [ 4√R ]   ;        (7) 



3290                                                                           J. Menčík, L.  Beneš 
 
R is the indenter tip radius. For pointed indenters (conical, 
Berkovich or Vickers, subscript c), 
 

fC  =  h 2  ;   KC  =  π / [ 4 tanα]   ;         (8) 
 
α is the semiangle of indenter tip or of equivalent cone.  
 

The function ψ  for ideally elastic materials is: 
 

ψ  =  P (1 – ν) / G  ;        (9) 
 
G is the shear modulus, ν is Poisson ratio. The general 
formula for linearly-viscoelastic materials is 

ψ (t)  = dududPutJ
t

∫ −
0

][)(   ,      (10) 

 
where J(t) is the so-called creep compliance function, 
depending on the material model used, t is time, and u is a 
dummy variable for integration. For constant load after step 
change from 0 to P, the function ψ is simply the product of 
load and creep compliance function, 
 

ψ (t)  =  P J(t)   .        (11) 
 

However, step load is impossible to realise; there is always 
some period of load increase. For ramp loading with 
constant load rate, R = dP/dt = const, it holds 

ψ (t)  = ∫ −
t

duutJR
0

)(  .      (12) 

The penetration under constant load P following ramp load 
lasting tR can be described by the function 

ψ (t)  = ∫ −
Rt

duutJR
0

)(   .       (13) 

where tR is the duration of load increase. Formula (13), 
valid for t > tR, was obtained as the sum of two loads 
growing with the constant rate R: the first load starts at t = 0, 
while the other, acting in the opposite direction, starts at 
time tR. Thus, for t > tR, the load is constant, P = RtR.  
The application of the above formulae can be illustrated on 
a relatively universal model, consisting of a spring in series 
with a  Kelvin-Voigt unit  (Fig. 4), which  
 

 

   

C 0 , E 0 C 1 , E 1 

  τ1, η 1  
           

Fig. 4. Standard Linear Solid (a schematic). 
 
 
is a spring in parallel with a dashpot. For this model, called 
Standard Linear Solid, the creep compliance function is 
 

 J(t)  =  C0  +  C1 [1 – exp(– t /τ1)]  ,      (14) 

where C0 and C1 are compliance constants, and τ1 is 
so-called retardation time. This is a time constant of the 
system, related to the compliance C1 of the spring and 
viscosity η1 of the dashpot in the Kelvin-Voigt body as τ1 = 
η1C1. A more complex response can be approximated using 
more Kelvin-Voigt units in series, 
 

 J(t)  =  C0  +  ∑ Cj [1 – exp(– t /τj)]  ,    (15) 
 
(j = 1, 2,… n). The instantaneous compliances Cj are related 
to the shear moduli Gj and Poisson ratios νj by 
 

Cj = (1 – νj)/Gj.  .      (16) 
 
The springs can be characterised also by means of tensile 
moduli E, related to the shear moduli as 
 

Ej  =  2(1 + νj) Gj  .      (17)   
 

However, only G0 and E0 correspond to the actual 
(instantaneous) elastic modulus of the material. The other 
constants C1, C2… just characterise delayed deforming. The 
“moduli” G1, G2… or E1, E2… do not represent additional 
stiffnesses, but reciprocals of additional, time- dependent 
compliances.  

Indentation creep under constant load P following 
ramp loading (with constant load rate) lasting tR = P/R, can 
be described by the function derived by Oyen [7]: 
 

ψ (t)  =  P { C0 + C1 [1 – ρ1 exp(– t /τ1)]} , (18) 
 

or, for a generalised standard linear solid (15), 
 

ψ (t)  =  P { C0 + ∑ Cj [1 – ρj exp(– t /τj)]} . (19) 
 

In expressions (18) and (19), ρj is so-called ramp correction 
factor, calculated as [7]: 
 

ρj  =  (τj /tR) [exp(tR /τj) – 1]  .     (20) 
 
Note that the formulae (18) and (19), valid for t ≥ tR, differ 
from those for step loading, based on Eqs. (14) and (15), 
only by the factors ρj at the exponential terms. For fast 
loading, with the load increase very short compared to the 
retardation time, tR « τj, the ramp correction factor is close 
to 1; it attains 1.025 for tR /τj = 0.05 and 1.05 for tR/τj = 0.1, 
and grows rapidly for higher ratios tR /τj. 
REMARK. Creep compliance function (15) can also be 
written in another form [7]: 
 

J(t)  =  C0´ –  ∑ Cj exp(– t /τj)  ,      (21) 
 
where  

C0´  =  C0 + ∑ Cj  .        (22) 
 

C0´ expresses the asymptotic compliance, 
corresponding to very long loading (t → ∞), in contrast to 
C0 that characterises the instantaneous compliance, i.e. the 
immediate reaction to sudden loading. Similarly, Eq. (19) 
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can be written as follows:  
 

ψ (t)  =  P [C0´ –  ∑ Cj ρj exp(– t /τj)] .      (23) 
 

In the limit case with j = 1, formulae (21) and (23) 
correspond to the Standard Linear Solid (15) and (18). 
 
 

4. Practical part 
 
A suitable procedure for the determination of material 

parameters is as follows. The indenter is loaded quickly 
(with the constant load rate R) to the nominal load P, then 
kept under this load for a relatively long time, and unloaded 
quickly. From the unloading curve, the contact stiffness is 
determined, either directly as S = dP/dt if the indenter 
velocity at the end of dwell was negligible, or using 
correction (5). The contact area A, necessary for the 
determination of instantaneous elastic modulus E0 from the 
unloading curve via Eqs. (3) and (4), is calculated from the 
contact depth hc, determined by Eq. (2) from the depth h at 
the beginning of unloading.  

 The dwell under constant load can be used for the 
determination of constants in rheological (spring and 
dashpot) models. Depending on the model, the function 
ψ(t), defined by Eq. (18) or (19), is inserted into (6), 
together with the function f and constant K, chosen from Eq. 
(7) or (8) with respect to the indenter shape. This function 
f[h(t)] is then used to fit the measured h(t) data. 

The constants C0, C1, τ1, ρ1, etc. can be obtained by 
minimising the sum of squared differences between the 
measured and calculated h(t) values. A suitable tool for this 
purpose is the facility Solver in some programs, e.g. Excel. 
However, the actual procedure must be modified for the 
following reason. The constants Cj appear in Eqs. (18), (19) 
and (23) only together with the constant ρj (as product Cjρj), 
or together with the constant C0 (as C0´, cf. Eq. 22). Thus, 
the regression fitting of experimental data can yield the 
correct values of (Cjρj) and Cj´, while the individual values 
of constants Cj can be wrong. The constants Cj, however, 
are the genuine material parameters, independent of the 
loading history, and must be determined accurately. Their 
correct values can be obtained using a simple three-step 
data processing, based on the verified fact that the 
retardation times τj can be determined correctly for any 
mathematical form of the model (23). 

 In the first step of the procedure, the h(t) data obtained 
by indentation during the constant-load part of the test are 
fitted by the function (23), with all constants C0, C1, τ1, ρ1, 
etc. considered as “free”. In this way, the retardation times 
τj are obtained. Then, the ramp correction factors ρj are 
calculated from Eq. (20) for these times τj and the duration 
tR of the load increase. These values ρj are then inserted as 
fixed constants into Eq. (23) or (19), and the curve fitting, 
now searching for the remaining constants C0, C1, τ1, etc. is 
done again. Computer modelling has shown that this 
procedure yields correct results. 

From the compliances C0, C1, etc., it is also possible to 
calculate the values of G0, G1, etc. (or E0, E1…) for the 
(chosen) value of Poisson ratio ν. In an ideal case, the 
instantaneous shear modulus G0 is related to the 
(instantaneous) tensile modulus E0 from the unloading 
curve as G0 = E0/[2(1+ν)]. If the calculated parameters do 

not fulfil this condition, it is an indication that a correction 
is necessary, e.g. for the delayed deforming during the load 
increase period. 

It should be reminded here that very complex models, 
with more than about 6 – 7 regression constants, can 
sometimes cause problems in the search for their accurate 
values, and a compromise between the model complexity, 
accuracy and “robustness” may be necessary. A similarly 
good fit is sometimes obtained for various arrangements of 
springs and dashpots. The model complexity should also 
respect the amount of experimental data available, 
especially regarding the test duration.  

A final remark. Equations (14), (15), (18) and (19) are 
only valid for reversible viscoelastic deformations, which 
occur under a spherical indenter (sometimes even under 
pointed indenter [8]) if sufficiently low load is used. For 
higher loads, also plastic deformations appear. The 
characterisation of viscoelastic-plastic materials with 
permanent deformations exceeds the scope of this paper 
and will be the topic of another work.  

 
 
5. Summary 
 
Mechanical properties of viscoelastic materials with 

time-dependent response can be determined by nano- 
indentation, which continuously measures indenter load 
and displacement. The paper has explained the principle of 
the method as used for elastic-plastic materials, gave the 
basic formulae for expressing the load response of 
visco-elastic materials by means of spring-and-dashpot 
models, and described a procedure for their indentation 
testing and the determination of material parameters.    
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